miércoles, 16 de febrero de 2011

Binomio al cuadrado o cuadrado de un binomio


Binomio Cuadrado Perfecto
Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Es decir:
 (a + b)^2 = a^2 + 2 a b + b^2 \,
un trinomio de la forma: a^2 + 2 a b + b^2 \;, se conoce como trinomio cuadrado perfecto.
Cuando el segundo término es negativo, la ecuación que se obtiene es:
 (a - b)^2 = a^2 - 2 a b + b^2 \,
En ambos casos el tercer término tiene siempre signo positivo.
Ejemplo
(2x - 3y)^2 = (2x)^2 + 2(2x)(-3y) + (-3y)^2 \,
simplificando:
(2x - 3y)^2 = 4x^2 -12xy +9y^2 \,
Caso III - Trinomio Cuadrado Perfecto
Se identifica por tener tres términos, de los cuales dos tienen raíces cuadradas exactas, y el restante equivale al doble producto de las raíces del primero por el segundo. Para solucionar un Trinomio Cuadrado Perfecto debemos reordenar los términos dejando de primero y de tercero los términos que tengan raíz cuadrada, luego extraemos la raíz cuadrada del primer y tercer término y los escribimos en un paréntesis, separándolos por el signo que acompaña al segundo término, al cerrar el paréntesis elevamos todo el binomio al cuadrado.
(a+b)^2 = a^2+2ab+b^2\,
(a-b)^2 = a^2-2ab+b^2\,
Ejemplo 1:
(5x-3y)^2 = 25x^2-30xy+9y^2\,
Ejemplo 2:
(3x+2y)^2 = 9x^2+12xy+4y^2\,
Ejemplo 3:
(x+y)^2 = x^2+2xy+y^2\,
Ejemplo 4:
4x^2+25y^2-20xy\,
Organizando los términos tenemos
4x^2 - 20xy + 25y^2\,
Extrayendo la raíz cuadrada del primer y último término y agrupándolos en un paréntesis separados por el signo del segundo término y elevando al cuadrado nos queda:
(2x - 5y)^2\,
Al verificar que el doble producto del primero por el segundo término es -20xy determinamos que es correcta la solución. De no ser así, esta solución no aplicaría.

2 comentarios: